

Chapter 5

Dealing with sizes

Already you’ve seen some references to sizes in connection with various visual elements:

 The iOS status bar has a height of 20, which you can adjust for with a Padding setting on the

page.

 The BoxView sets its default width and height to 40.

 The default Padding within a Frame is 20.

 The default Spacing property on the StackLayout is 6.

And then there’s Device.GetNamedSize, which for various members of the NamedSize enumeration

returns a platform-dependent number appropriate for FontSize values for a Label or Button.

What are these numbers? What are their units? And how do we intelligently set properties requiring

sizes to other values?

Good questions. As you’ve seen, the various platforms have different screen sizes and different text

sizes, and all display a different quantity of text on the screen. Is that quantity of text something that a

Xamarin.Forms application can anticipate or control? And even if it’s possible, is it a proper program-

ming practice? Should an application adjust font sizes to achieve a desired text density on the screen?

In general, when programming a Xamarin.Forms application, it’s best not to get too close to the ac-

tual numeric dimensions of visual objects. It’s preferable to trust Xamarin.Forms and the individual

platforms to make the best default choices.

However, there are times when a programmer needs to know something about the size of particular

visual objects and the size of the screen on which they appear.

Pixels, points, dps, DIPs, and DIUs

Video displays consist of a rectangular array of pixels. Any object displayed on the screen also has a

pixel size. In the early days of personal computers, programmers sized and positioned visual objects in

units of pixels. But as a greater variety of screen sizes and pixel densities became available, working

with pixels became undesirable for programmers attempting to write applications that look roughly

the same on many devices. Another solution was required.

These solutions began with operating systems for desktop computers and were then adapted for

mobile devices. For this reason, it’s illuminating to begin this exploration with the desktop.

Chapter 5 Dealing with sizes 88

Desktop video displays have a wide range of pixel dimensions, from the nearly obsolete 640 × 480

on up into the thousands. The aspect ratio of 4:3 was once standard for computer displays—and for

movies and television as well—but the high-definition aspect ratio of 16:9 (or the similar 16:10) is now

more common.

Desktop video displays also have a physical dimension usually measured along the diagonal of the

screen in inches or centimeters. The pixel dimension combined with the physical dimension allows you

to calculate the video display’s resolution or pixel density in dots per inch (DPI), sometimes also re-

ferred to as pixels per inch (PPI). The display resolution can also be measured as a dot pitch, which is

the distance between adjacent pixel centers, usually measured in millimeters.

For example, you can use the Pythagorean theorem to calculate that an ancient 800 × 600 display

has a diagonal length of 1,000, the square root of 800 squared plus 600 squared. If this monitor has a

13-inch diagonal, that’s a pixel density of 77 DPI, or a dot pitch of 0.33 millimeters. However, a 13-inch

screen on a modern laptop might have pixel dimensions of 2560 × 1600, which is a pixel density of

about 230 DPI, or a dot pitch of about 0.11 millimeters. A 100-pixel square object on this screen is one-

third the size of the same object on the older screen.

Programmers should have a fighting chance when attempting to size visual elements correctly. For

this reason, both Apple and Microsoft devised systems for desktop computing that allow programmers

to work with the video display in some form of device-independent units instead of pixels. Most of the

dimensions that a programmer encounters and specifies are in these device-independent units. It is the

responsibility of the operating system to convert back and forth between these units and pixels.

In the Apple world, desktop video displays were traditionally assumed to have a resolution of 72

units to the inch. This number comes from typography, where many measurements are in units of

points. In classical typography, there are approximately 72 points to the inch, but in digital typography

the point has been standardized to be exactly one seventy-second of an inch. By working with points

rather than pixels, a programmer has an intuitive sense of the relationship between numeric sizes and

the area that visual objects occupy on the screen.

In the Windows world, a similar technique was developed, called device-independent pixels (DIPs) or

device-independent units (DIUs). To a Windows programmer, desktop video displays are assumed to

have a resolution of 96 DIUs, which is exactly one-third higher than 72 DPI, although it can be adjusted

by the user.

Mobile devices, however, have somewhat different rules: The pixel densities achieved on modern

phones are typically much higher than on desktop displays. This higher pixel density allows text and

other visual objects to shrink much more in size before becoming illegible.

Phones are also typically held much closer to the user’s face than is a desktop or laptop screen. This

difference also implies that visual objects on the phone can be smaller than comparable objects on

desktop or laptop screens. Because the physical dimensions of the phone are much smaller than desk-

top displays, shrinking down visual objects is very desirable because it allows much more to fit on the

screen.

Chapter 5 Dealing with sizes 89

Apple continues to refer to the device-independent units on the iPhone as points. Until recently, all

of Apple’s high-density displays—which Apple refers to by the brand name Retina—have a conversion

of two pixels to the point. This was true for the MacBook Pro, iPad, and iPhone. The recent exception is

the iPhone 6 Plus, which has three pixels to the point.

For example, the 640 × 960 pixel dimension of the 3.5-inch screen of the iPhone 4 has an actual

pixel density of about 320 DPI. There are two pixels to the point, so to an application program running

on the iPhone 4, the screen appears to have a dimension of 320 × 480 points. The iPhone 3 actually

did have a pixel dimension of 320 × 480, and points equaled pixels, so to a program running on these

two devices, the displays of the iPhone 3 and iPhone 4 appear to be the same size. Despite the same

perceived sizes, graphical objects and text are displayed in greater resolution on the iPhone 4 than the

iPhone 3.

For the iPhone 3 and iPhone 4, the relationship between the screen size and point dimensions im-

plies a conversion factor of 160 points to the inch rather than the desktop standard of 72.

The iPhone 5 has a 4-inch screen, but the pixel dimension is 640 × 1136. The pixel density is about

the same as the iPhone 4. To a program, this screen has a size of 320 × 768 points.

The iPhone 6 has a 4.7-inch screen and a pixel dimension of 750 × 1334. The pixel density is also

about 320 DPI. There are two pixels to the point, so to a program, the screen appears to have a point

size of 375 × 667.

However, the iPhone 6 Plus has a 5.5-inch screen and a pixel dimension of 1080 × 1920, which is a

pixel density of 400 DPI. This higher pixel density implies more pixels to the point, and for the iPhone 6

Plus, Apple has set the point equal to three pixels. That would normally imply a perceived screen size of

360 × 640 points, but to a program, the iPhone 6 Plus screen has a point size of 414 × 736, so the per-

ceived resolution is about 150 points to the inch.

This information is summarized in the following table:

Model iPhone 2, 3 iPhone 4 iPhone 5 iPhone 6 iPhone 6 Plus*

Pixel size 320 × 480 640 × 960 640 × 1136 750 × 1334 1080 × 1920

Screen diagonal 3.5 in. 3.5 in. 4 in. 4.7 in. 5.5 in.

Pixel density 165 DPI 330 DPI 326 DPI 326 DPI 401 DPI

Pixels per point 1 2 2 2 3

Point size 320 × 480 320 × 480 320 × 568 375 × 667 414 × 736

Points per inch 165 165 163 163 154

* Includes 115 percent downsampling.

Android does something quite similar: Android devices have a wide variety of sizes and pixel dimen-

sions, but an Android programmer generally works in units of density-independent pixels (dps). The

relationship between pixels and dps is set assuming 160 dps to the inch, which means that Apple and

Android device-independent units are very similar.

Microsoft took a different approach with Windows Phone 7. The original Windows Phone 7 devices

had a screen dimension of 480 × 800 pixels, which is often referred to as WVGA (Wide Video Graphics

Chapter 5 Dealing with sizes 90

Array). Applications worked with this display in units of pixels. If you assume an average screen size of 4

inches for a 480 × 800 Windows Phone 7 device, this means that Windows Phone 7 implicitly assumed

a pixel density of about 240 DPI. That’s 1.5 times the assumed pixel density of iPhone and Android de-

vices. Eventually, several larger screen sizes were allowed: 768 × 1280 (WXGA or Wide Extended

Graphics Array), 720 × 1280 (referred to using high-definition television lingo as 720p), and 1080 ×

1920 (called 1080p). For these additional display sizes, programmers worked in device-independent

units. An internal scaling factor translated between pixels and device-independent units so that the

width of the screen in portrait mode always appeared to be 480 pixels.

With the Windows Runtime API in Windows Phone 8.1, different scaling factors were introduced

based on both the screen’s pixel size and the physical size of the screen. The following table was put

together based on the Windows Phone 8.1 emulators using a program named WhatSize, which you’ll

see shortly:

Screen type WVGA 4” WXGA 4.5” 720p 4.7” 1080p 5.5” 1080p 6”

Pixel size 480 × 800 768 × 1280 720 × 1280 1080 × 1920 1080 × 1920

Size in DIUs 400 × 640 384 × 614.5 400 × 684 450 × 772 491 × 847

Scaling factor 1.2 2 1.8 2.4 2.2

DPI 194 161 169 167 167

The scaling factors were calculated from the width because the height in DIUs displayed by the What-

Size program excludes the Windows Phone status bar. The final DPI figures were calculated based on

the full pixel size, the diagonal size of the screen in inches, and the scaling factor.

Aside from the WVGA outlier, the calculated DPI is close enough to the 160 DPI criterion associated

with iOS and Android devices.

Windows 10 Mobile uses somewhat higher scaling factors, and in multiples of 0.25 rather than 0.2.

The following table was put together based on the Windows 10 Mobile emulators:

Screen type WVGA 4” QHD 5.2” WXGA 4.5” 720p 5” 1080p 6”

Pixel size 480 × 800 540 × 960 768 × 1280 720 × 1280 1080 × 1920

Size in DIUs 320 × 512 360 × 616 341 × 546 360 × 616 432 × 744

Scaling factor 1.5 1.5 2.25 2 2.5

DPI 155 141 147 147 141

You might conclude from this that a good average DPI for Windows 10 Mobile is 144 (rounded to the

nearest multiple of 16) rather than 160. Or you might say that it’s close enough to 160 to assume that

it’s consistent with iOS and Windows Phone.

Xamarin.Forms has a philosophy of using the conventions of the underlying platforms as much as

possible. In accordance with this philosophy, a Xamarin.Forms programmer works with sizes defined by

each particular platform. All sizes that the programmer encounters through the Xamarin.Forms API are

in these platform-specific, device-independent units.

Xamarin.Forms programmers can generally treat the phone display in a device-independent man-

ner, with the following resolution:

Chapter 5 Dealing with sizes 91

 160 units to the inch

 64 units to the centimeter

The VisualElement class defines two properties, named Width and Height, that provide the

rendered dimensions of views, layouts, and pages in these device-independent units. However, the ini-

tial settings of Width and Height are “mock” values of –1. The values of these properties become valid

only when the layout system has positioned and sized everything on the page. Also, keep in mind that

the default Fill setting for HorizontalOptions or VerticalOptions often causes a view to

occupy more space than it would otherwise. The Width and Height values reflect this extra space.

The Width and Height values also include any Padding that may be set on the element and are con-

sistent with the area colored by the view’s BackgroundColor property.

VisualElement defines an event named SizeChanged that is fired whenever the Width or

Height property of the visual element changes. This event is part of several notifications that occur

when a page is laid out, a process that involves the various elements of the page being sized and posi-

tioned. This layout process occurs following the first definition of a page (generally in the page con-

structor), and a new layout pass takes place in response to any change that might affect layout—for

example, when views are added to a ContentPage or a StackLayout, removed from these objects, or

when properties are set on visual elements that might result in their sizes changing.

A new layout is also triggered when the screen size changes. This happens mostly when the phone

is swiveled between portrait and landscape modes.

A full familiarity with the Xamarin.Forms layout system often accompanies the job of writing your

own Layout<View> derivatives. This task awaits us in Chapter 26, “Custom layouts.” Until then, simply

knowing when Width and Height properties change is helpful for working with sizes of visual objects.

You can attach a SizeChanged handler to any visual object on the page, including the page itself. The

WhatSize program demonstrates how to obtain the page’s size and display it:

public class WhatSizePage : ContentPage

{

 Label label;

 public WhatSizePage()

 {

 label = new Label

 {

 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.Center

 };

 Content = label;

 SizeChanged += OnPageSizeChanged;

 }

 void OnPageSizeChanged(object sender, EventArgs args)

Chapter 5 Dealing with sizes 92

 {

 label.Text = String.Format("{0} \u00D7 {1}", Width, Height);

 }

}

This is the first example of event handling in this book, and you can see that events are handled in the

normal C# and .NET manner. The code at the end of the constructor attaches the OnPageSize-

Changed event handler to the SizeChanged event of the page. The first argument to the event han-

dler (customarily named sender) is the object firing the event, in this case the instance of WhatSize-

Page, but the event handler doesn’t use that. Nor does the event handler use the second argument—

the so-called event arguments—which sometimes provides more information about the event.

Instead, the event handler accesses the Label element (conveniently saved as a field) to display the

Width and Height properties of the page. The Unicode character in the String.Format call is a

times (×) symbol.

The SizeChanged event is not the only opportunity to obtain an element’s size. VisualElement

also defines a protected virtual method named OnSizeAllocated that indicates when the visual ele-

ment is assigned a size. You can override this method in your ContentPage derivative rather than

handling the SizeChanged event, but OnSizeAllocated is sometimes called when the size isn’t actu-

ally changing.

Here’s the program running on the three standard platforms:

For the record, these are the sources of the screens in these three images:

 The iPhone 6 simulator, with pixel dimensions of 750 × 1334.

Chapter 5 Dealing with sizes 93

 An LG Nexus 5 with a screen size of 1080 × 1920 pixels.

 A Nokia Lumia 925 with a screen size of 768 × 1280 pixels.

Notice that the vertical size perceived by the program on the Android does not include the area oc-

cupied by the status bar or bottom buttons; the vertical size on the Windows 10 Mobile device does

not include the area occupied by the status bar.

By default, all three platforms respond to device orientation changes. If you turn the phones (or em-

ulators) 90 degrees counterclockwise, the phones display the following sizes:

The screenshots for this book are designed only for portrait mode, so you’ll need to turn this book

sideways to see what the program looks like in landscape. The 598-pixel width on the Android excludes

the area for the buttons; the 335-pixel height excludes the status bar, which always appears above the

page. On the Windows 10 Mobile device, the 728-pixel width excludes the area for the status bar,

which appears in the same place but with rotated icons to reflect the new orientation.

Here’s the program running on the iPad Air 2 simulator with a pixel dimension of 2048 × 1536.

Chapter 5 Dealing with sizes 94

Obviously, the scaling factor is 2. The screen is 9.7 inches in diagonal for a resolution of 132 DPI.

The Surface Pro 3 has a pixel dimension of 2160 × 1440. The scaling factor is selectable by the user

to make everything on the screen larger or smaller, but the recommended scaling factor is 1.5:

The height displayed by WhatSize excludes the taskbar at the bottom of the screen. The screen is 12”

in diagonal for a resolution of 144 DPI.

Chapter 5 Dealing with sizes 95

A few notes on the WhatSize program itself:

WhatSize creates a single Label in its constructor and sets the Text property in the event handler.

That’s not the only way to write such a program. The program could use the SizeChanged handler to

create a whole new Label with the new text and set that new Label as the content of the page, in

which case the previous Label would become unreferenced and hence eligible for garbage collection.

But creating new visual elements is unnecessary and wasteful in this program. It’s best for the program

to create only one Label view and just set the Text property to indicate the page’s new size.

Monitoring size changes is the only way a Xamarin.Forms application can detect orientation

changes without obtaining platform-specific information. Is the width greater than the height? That’s

landscape. Otherwise, it’s portrait.

By default, the Visual Studio and Xamarin Studio templates for Xamarin.Forms solutions enable de-

vice orientation changes for all three platforms. If you want to disable orientation changes—for exam-

ple, if you have an application that just doesn’t work well in portrait or landscape mode—you can do

so.

For iOS, first display the contents of Info.plist in Visual Studio or Xamarin Studio. In the iPhone De-

ployment Info section, use the Supported Device Orientations area to specify which orientations are

allowed.

For Android, in the Activity attribute on the MainActivity class in the MainActivity.cs file, add:

ScreenOrientation = ScreenOrientation.Landscape

or

ScreenOrientation = ScreenOrientation.Portrait

The Activity attribute generated by the solution template contains a ConfigurationChanges ar-

gument that also refers to screen orientation, but the purpose of ConfigurationChanges is to inhibit

a restart of the activity when the phone’s orientation or screen size changes.

For the two Windows Phone projects, the class and enumeration to use is in the Windows-

.Graphics.Display namespace. In the MainPage constructor in the MainPage.xaml.cs file, set the

static DisplayInformation.AutoRotationPreferences property to one or more members of the

DisplayOrientations enumeration combined with the C# bitwise OR operation. To restrict the pro-

gram to landscape or portrait, use:

DisplayInformation.AutoRotationPreferences = DisplayOrientations.Landscape

or:

DisplayInformation.AutoRotationPreferences = DisplayOrientations.Portrait;

Chapter 5 Dealing with sizes 96

Metrical sizes

Now that you know how sizes in a Xamarin.Forms application approximately correspond to metrical

dimensions of inches and centimeters, you can size elements so that they are approximately the same

size on various devices. Here’s a program called MetricalBoxView that displays a BoxView with a

width of approximately one centimeter and a height of approximately one inch:

public class MetricalBoxViewPage : ContentPage

{

 public MetricalBoxViewPage()

 {

 Content = new BoxView

 {

 Color = Color.Accent,

 WidthRequest = 64,

 HeightRequest = 160,

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.Center

 };

 }

}

If you actually take a ruler to the object on your phone’s screen, you’ll find that it’s not exactly the

desired size but certainly close to it, as these screenshots also confirm:

This program is intended to run on phones. If you want to run it on tablets as well, you might use

the Device.Idiom property to set a somewhat smaller factor for the iPad and Windows tablets.

Chapter 5 Dealing with sizes 97

Estimated font sizes

The FontSize property on Label and Button specifies the approximate height of font characters

from the bottom of descenders to the top of ascenders, often (depending on the font) including dia-

critical marks as well. In most cases you’ll want to set this property to a value returned by the De-

vice.GetNamedSize method. This allows you to specify a member of the NamedSize enumeration:

Default, Micro, Small, Medium, or Large.

Alternatively, you can set the FontSize property to actual numeric font sizes, but there’s a little

problem involved (to be discussed in detail shortly). For the most part, you specify font sizes in the

same device-independent units used throughout Xamarin.Forms, which means that you can calculate

device-independent font sizes based on the platform resolution.

For example, suppose you want to use a 12-point font in your program. The first thing you should

know is that while a 12-point font might be a comfortable size for printed material or a desktop screen,

on a phone it’s quite large. But let’s continue.

There are 72 points to the inch, so a 12-point font is one-sixth of an inch. Multiply by the DPI reso-

lution of 160 and that’s about 27 device-independent units.

Let’s write a little program called FontSizes, which begins with a display similar to the NamedFont-

Sizes program in Chapter 3 but then displays some text with numeric point sizes, converted to device-

independent units using the device resolution:

public class FontSizesPage : ContentPage

{

 public FontSizesPage()

 {

 BackgroundColor = Color.White;

 StackLayout stackLayout = new StackLayout

 {

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.Center

 };

 // Do the NamedSize values.

 NamedSize[] namedSizes =

 {

 NamedSize.Default, NamedSize.Micro, NamedSize.Small,

 NamedSize.Medium, NamedSize.Large

 };

 foreach (NamedSize namedSize in namedSizes)

 {

 double fontSize = Device.GetNamedSize(namedSize, typeof(Label));

 stackLayout.Children.Add(new Label

 {

 Text = String.Format("Named Size = {0} ({1:F2})",

Chapter 5 Dealing with sizes 98

 namedSize, fontSize),

 FontSize = fontSize,

 TextColor = Color.Black

 });

 }

 // Resolution in device-independent units per inch.

 double resolution = 160;

 // Draw horizontal separator line.

 stackLayout.Children.Add(

 new BoxView

 {

 Color = Color.Accent,

 HeightRequest = resolution / 80

 });

 // Do some numeric point sizes.

 int[] ptSizes = { 4, 6, 8, 10, 12 };

 foreach (double ptSize in ptSizes)

 {

 double fontSize = resolution * ptSize / 72;

 stackLayout.Children.Add(new Label

 {

 Text = String.Format("Point Size = {0} ({1:F2})",

 ptSize, fontSize),

 FontSize = fontSize,

 TextColor = Color.Black

 });

 }

 Content = stackLayout;

 }

}

To facilitate comparisons among the three screens, the backgrounds have been uniformly set to

white and the labels to black. Notice the BoxView inserted into the StackLayout between the two

foreach blocks: the HeightRequest setting gives it a device-independent height of approximately

one-eightieth of an inch, and it resembles a horizontal rule.

Interestingly, the resultant visual sizes based on the calculation are more consistent among the plat-

forms than the named sizes. The numbers in parentheses are the numeric FontSize values in device-

independent units:

Chapter 5 Dealing with sizes 99

Fitting text to available size

You might need to fit a block of text to a particular rectangular area. It’s possible to calculate a value

for the FontSize property of Label based on the number of text characters, the size of the rectangu-

lar area, and just two numbers.

The first number is line spacing. This is the vertical height of a Label view per line of text. For the

default fonts associated with the three platforms, it is roughly related to the FontSize property as

follows:

 iOS: lineSpacing = 1.2 * label.FontSize

 Android: lineSpacing = 1.2 * label.FontSize

 Windows Phone: lineSpacing = 1.3 * label.FontSize

The second helpful number is average character width. For a normal mix of uppercase and lower-

case letters for the default fonts, this average character width is about half of the font size, regardless

of the platform:

 averageCharacterWidth = 0.5 * label.FontSize

For example, suppose you want to fit a text string containing 80 characters in a width of 320 units,

and you’d like the font size to be as large as possible. Divide the width (320) by half the number of

characters (40), and you get a font size of 8, which you can set to the FontSize property of Label. For

Chapter 5 Dealing with sizes 100

text that’s somewhat indeterminate and can’t be tested beforehand, you might want to make this cal-

culation a little more conservative to avoid surprises.

The following program uses both line spacing and average character width to fit a paragraph of text

on the page, minus the area at the top of the iPhone occupied by the status bar. To make the exclusion

of the iOS status bar a bit easier in this program, the program uses a ContentView.

ContentView derives from Layout but only adds a Content property to what it inherits from

Layout. ContentView is also the base class to Frame. Although ContentView has no functionality

other than occupying a rectangular area of space, it is useful for two purposes: Most often, Content-

View can be a parent to other views to define a new custom view. But ContentView can also simulate

a margin.

As you might have noticed, Xamarin.Forms has no concept of a margin, which traditionally is similar

to padding except that padding is inside a view and a part of the view, while a margin is outside the

view and actually part of the parent’s view. A ContentView lets us simulate this. If you find a need to

set a margin on a view, put the view in a ContentView and set the Padding property on the Con-

tentView. ContentView inherits a Padding property from Layout.

The EstimatedFontSize program uses ContentView in a slightly different manner: It sets the cus-

tomary padding on the page to avoid the iOS status bar, but then it sets a ContentView as the con-

tent of that page. Hence, this ContentView is the same size as the page, but excluding the iOS status

bar. It is on this ContentView that the SizeChanged event is attached, and it is the size of this Con-

tentView that is used to calculate the text font size.

The SizeChanged handler uses the first argument to obtain the object firing the event (in this case

the ContentView), which is the object in which the Label must fit. The calculation is described in

comments:

public class EstimatedFontSizePage : ContentPage

{

 Label label;

 public EstimatedFontSizePage()

 {

 label = new Label();

 Padding = new Thickness(0, Device.OnPlatform(20, 0, 0), 0, 0);

 ContentView contentView = new ContentView

 {

 Content = label

 };

 contentView.SizeChanged += OnContentViewSizeChanged;

 Content = contentView;

 }

 void OnContentViewSizeChanged(object sender, EventArgs args)

 {

 string text =

 "A default system font with a font size of S " +

Chapter 5 Dealing with sizes 101

 "has a line height of about ({0:F1} * S) and an " +

 "average character width of about ({1:F1} * S). " +

 "On this page, which has a width of {2:F0} and a " +

 "height of {3:F0}, a font size of ?1 should " +

 "comfortably render the ??2 characters in this " +

 "paragraph with ?3 lines and about ?4 characters " +

 "per line. Does it work?";

 // Get View whose size is changing.

 View view = (View)sender;

 // Define two values as multiples of font size.

 double lineHeight = Device.OnPlatform(1.2, 1.2, 1.3);

 double charWidth = 0.5;

 // Format the text and get its character length.

 text = String.Format(text, lineHeight, charWidth, view.Width, view.Height);

 int charCount = text.Length;

 // Because:

 // lineCount = view.Height / (lineHeight * fontSize)

 // charsPerLine = view.Width / (charWidth * fontSize)

 // charCount = lineCount * charsPerLine

 // Hence, solving for fontSize:

 int fontSize = (int)Math.Sqrt(view.Width * view.Height /

 (charCount * lineHeight * charWidth));

 // Now these values can be calculated.

 int lineCount = (int)(view.Height / (lineHeight * fontSize));

 int charsPerLine = (int)(view.Width / (charWidth * fontSize));

 // Replace the placeholders with the values.

 text = text.Replace("?1", fontSize.ToString());

 text = text.Replace("??2", charCount.ToString());

 text = text.Replace("?3", lineCount.ToString());

 text = text.Replace("?4", charsPerLine.ToString());

 // Set the Label properties.

 label.Text = text;

 label.FontSize = fontSize;

 }

}

The text placeholders named “?1”, “??2”, “?3”, and “?4” were chosen to be unique but also to be the

same number of characters as the numbers that replace them.

If the goal is to make the text as large as possible without the text spilling off the page, the results

validate the approach:

Chapter 5 Dealing with sizes 102

Not bad. Not bad at all. The text actually displays in one less line that indicated on all three platforms,

but the technique seems sound. It’s not always the case that the same FontSize is calculated for land-

scape mode, but it happens sometimes:

Chapter 5 Dealing with sizes 103

A fit-to-size clock

The Device class includes a static StartTimer method that lets you set a timer that fires a periodic

event. The availability of a timer event means that a clock application is possible, even if it displays the

time only in text.

The first argument to Device.StartTimer is an interval expressed as a TimeSpan value. The timer

fires an event periodically based on that interval. (You can go down as low as 15 or 16 milliseconds,

which is about the period of the frame rate of 60 frames per second common on video displays.) The

event handler has no arguments but must return true to keep the timer going.

The FitToSizeClock program creates a Label for displaying the time and then sets two events: the

SizeChanged event on the page for changing the font size, and the Device.StartTimer event for

one-second intervals to change the Text property.

Many C# programmers these days like to define small event handlers as anonymous lambda func-

tions. This allows the event-handling code to be very close to the instantiation and initialization of the

object firing the event instead of somewhere else in the file. It also allows referencing objects within

the event handler without storing those objects as fields.

In this program, both event handlers simply change a property of the Label, and they are both ex-

pressed as lambda functions so that they can access the Label without it being stored as a field:

public class FitToSizeClockPage : ContentPage

{

 public FitToSizeClockPage()

 {

 Label clockLabel = new Label

 {

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.Center

 };

 Content = clockLabel;

 // Handle the SizeChanged event for the page.

 SizeChanged += (object sender, EventArgs args) =>

 {

 // Scale the font size to the page width

 // (based on 11 characters in the displayed string).

 if (this.Width > 0)

 clockLabel.FontSize = this.Width / 6;

 };

 // Start the timer going.

 Device.StartTimer(TimeSpan.FromSeconds(1), () =>

 {

 // Set the Text property of the Label.

 clockLabel.Text = DateTime.Now.ToString("h:mm:ss tt");

Chapter 5 Dealing with sizes 104

 return true;

 });

 }

}

The StartTimer handler specifies a custom formatting string for DateTime that results in 10 or 11

characters, but two of those are capital letters, and those are wider than average characters. The

SizeChanged handler implicitly assumes that 12 characters are displayed by setting the font size to

one-sixth of the page width:

Of course, the text is much larger in landscape mode:

Chapter 5 Dealing with sizes 105

This one-second timer doesn’t tick exactly at the beginning of every second, so the displayed time

might not precisely agree with other time displays on the same device. You can make it more accurate

by setting a more frequent timer tick. Performance won’t be impacted much because the display still

changes only once per second and won’t require a new layout cycle until then.

Accessibility issues

The EstimatedFontSize program and the FitToSizeClock program both have a subtle flaw, but the

problem might not be so subtle if you’re one of the many people who can’t comfortably read text on a

mobile device and uses the device’s accessibility features to make the text larger.

On iOS, run the Settings app, and choose General, and Accessibility, and Larger Text. You can

then use a slider to make text on the screen larger or smaller. The page indicates that text will only be

adjusted in iOS applications that support the Dynamic Type feature.

On Android, run the Settings app, and choose Display and then Font size. You are presented with

four radio buttons for selecting Small, Normal (the default), Large, or Huge.

On a Windows 10 Mobile device, run the Settings app, and choose Ease of Access and then More

options. You can then move a slider labeled Text scaling from 100% to 200%.

Here’s what you will discover:

The iOS setting has no effect on Xamarin.Forms applications.

Chapter 5 Dealing with sizes 106

The Android setting affects the values returned from Device.GetNamedSize. If you select some-

thing other than Normal and run the FontSizes program again, you’ll see that for the

NamedSize.Default argument, Device.GetNamedSize returns 14 when the setting is Normal (as

the earlier screenshot shows), but returns 12 for a setting of Small, 16 for Large, and 18 1/3 for Huge.

Also, all the text displayed on the Android screen is a different size—either smaller or larger de-

pending on what setting you selected—even for constant FontSize values.

On Windows 10 Mobile, the values returned from Device.GetNamedSize do not depend on the

accessibility setting, but all the text is displayed larger.

This means that the EstimatedFontSize or FitToSizeClock programs do not run correctly on An-

droid or Windows 10 Mobile with the accessibility setting for larger text. Part of the text is truncated.

Let’s explore this a little more. The AccessibilityTest program displays two Label elements on its

page. The first has a constant FontSize of 20, and the second merely displays the size of the first

Label when its size changes:

public class AccessibilityTestPage : ContentPage

{

 public AccessibilityTestPage()

 {

 Label testLabel = new Label

 {

 Text = "FontSize of 20" + Environment.NewLine + "20 characters across",

 FontSize = 20,

 HorizontalTextAlignment = TextAlignment.Center,

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.CenterAndExpand

 };

 Label displayLabel = new Label

 {

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.CenterAndExpand

 };

 testLabel.SizeChanged += (sender, args) =>

 {

 displayLabel.Text = String.Format("{0:F0} \u00D7 {1:F0}", testLabel.Width,

 testLabel.Height);

 };

 Content = new StackLayout

 {

 Children =

 {

 testLabel,

 displayLabel

 }

 };

 }

Chapter 5 Dealing with sizes 107

}

Normally, the second Label displays a size that is roughly consistent with the assumptions described

earlier:

But now go into the accessibility settings and crank them all the way up. Both Android and Windows

10 Mobile display larger text:

Chapter 5 Dealing with sizes 108

The character size assumptions described earlier are no longer valid, and that’s why the programs fail

to fit the text.

But there is an alternative approach to sizing text to a rectangular area.

Empirically fitting text

Another approach to fitting text within a rectangle of a particular size involves empirically determining

the size of the rendered text based on a particular font size and then adjusting that font size up or

down. This approach has the advantage of working on all devices regardless of the accessibility

settings.

But the process can be tricky: The first problem is that there is not a clean linear relationship be-

tween the font size and the height of the rendered text. As text gets larger relative to the width of its

container, more line breaks result, with more wasted space. A calculation to find the optimum font size

often involves a loop that narrows in on the value.

A second problem involves the actual mechanism of obtaining the size of a Label rendered with a

particular font size. You can set a SizeChanged handler on the Label, but within that handler you

don’t want to make any changes (such as setting a new FontSize property) that will cause recursive

calls to that handler.

A better approach is calling the GetSizeRequest method defined by VisualElement and inher-

ited by Label and all other views. GetSizeRequest requires two arguments—a width constraint and

a height constraint. These values indicate the size of the rectangle in which you want to fit the element,

and one or the other can be infinity. When using GetSizeRequest with a Label, generally you set

the width constraint argument to the width of the container and the height constraint to

Double.PositiveInfinity.

The GetSizeRequest method returns a value of type SizeRequest, a structure with two proper-

ties, named Request and Minimum, both of type Size. The Request property indicates the size of the

rendered text. (More information on this and related methods can be found in Chapter 26.)

The EmpiricalFontSize project demonstrates this technique. For convenience, it defines a small

structure named FontCalc whose constructor makes the call to GetSizeRequest for a particular

Label (already initialized with text), a trial font size, and a text width:

struct FontCalc

{

 public FontCalc(Label label, double fontSize, double containerWidth)

 : this()

 {

 // Save the font size.

 FontSize = fontSize;

 // Recalculate the Label height.

Chapter 5 Dealing with sizes 109

 label.FontSize = fontSize;

 SizeRequest sizeRequest =

 label.GetSizeRequest(containerWidth, Double.PositiveInfinity);

 // Save that height.

 TextHeight = sizeRequest.Request.Height;

 }

 public double FontSize { private set; get; }

 public double TextHeight { private set; get; }

}

The resultant height of the rendered Label is saved in the TextHeight property.

When you make a call to GetSizeRequest on a page or a layout, the page or layout needs to ob-

tain the sizes of all its children down through the visual tree. This has a performance penalty, of course,

so you should avoid making calls like that unless necessary. But a Label has no children, so calling

GetSizeRequest on a Label is not nearly as bad. However, you should still try to optimize the calls.

Avoid looping through a sequential series of font size values to determine the maximum value that

doesn’t result in text exceeding the container height. A process that algorithmically narrows in on an

optimum value is better.

GetSizeRequest requires that the element be part of a visual tree and that the layout process has

at least partially begun. Don’t call GetSizeRequest in the constructor of your page class. You won’t

get information from it. The first reasonable opportunity is in an override of the page’s OnAppearing

method. Of course, you might not have sufficient information at this time to pass arguments to the

GetSizeRequest method.

However, calling GetSizeRequest doesn’t have any side effects. It doesn’t cause a new size to be

set on the element, which means that it doesn’t cause a SizeChanged event to be fired, which means

that it’s safe to call in a SizeChanged handler.

The EmpiricalFontSizePage class instantiates FontCalc values in the SizeChanged handler of

the ContentView that hosts the Label. The constructor of each FontCalc value makes GetSize-

Request calls on the Label and saves the resultant TextHeight. The SizeChanged handler begins

with trial font sizes of 10 and 100 under the assumption that the optimum value is somewhere be-

tween these two and that these represent lower and upper bounds. Hence the variable names lower-

FontCalc and upperFontCalc:

public class EmpiricalFontSizePage : ContentPage

{

 Label label;

 public EmpiricalFontSizePage()

 {

 label = new Label();

 Padding = new Thickness(0, Device.OnPlatform(20, 0, 0), 0, 0);

Chapter 5 Dealing with sizes 110

 ContentView contentView = new ContentView

 {

 Content = label

 };

 contentView.SizeChanged += OnContentViewSizeChanged;

 Content = contentView;

 }

 void OnContentViewSizeChanged(object sender, EventArgs args)

 {

 // Get View whose size is changing.

 View view = (View)sender;

 if (view.Width <= 0 || view.Height <= 0)

 return;

 label.Text =

 "This is a paragraph of text displayed with " +

 "a FontSize value of ?? that is empirically " +

 "calculated in a loop within the SizeChanged " +

 "handler of the Label's container. This technique " +

 "can be tricky: You don't want to get into " +

 "an infinite loop by triggering a layout pass " +

 "with every calculation. Does it work?";

 // Calculate the height of the rendered text.

 FontCalc lowerFontCalc = new FontCalc(label, 10, view.Width);

 FontCalc upperFontCalc = new FontCalc(label, 100, view.Width);

 while (upperFontCalc.FontSize - lowerFontCalc.FontSize > 1)

 {

 // Get the average font size of the upper and lower bounds.

 double fontSize = (lowerFontCalc.FontSize + upperFontCalc.FontSize) / 2;

 // Check the new text height against the container height.

 FontCalc newFontCalc = new FontCalc(label, fontSize, view.Width);

 if (newFontCalc.TextHeight > view.Height)

 {

 upperFontCalc = newFontCalc;

 }

 else

 {

 lowerFontCalc = newFontCalc;

 }

 }

 // Set the final font size and the text with the embedded value.

 label.FontSize = lowerFontCalc.FontSize;

 label.Text = label.Text.Replace("??", label.FontSize.ToString("F0"));

 }

}

Chapter 5 Dealing with sizes 111

In each iteration of the while loop, the FontSize properties of those two FontCalc values are aver-

aged and a new FontCalc is obtained. This becomes the new lowerFontCalc or upperFontCalc

value depending on the height of the rendered text. The loop ends when the calculated font size is

within one unit of the optimum value.

About seven iterations of the loop are sufficient to get a value that is clearly better than the esti-

mated value calculated in the earlier program:

Turning the phone sideways triggers another recalculation that results in a similar (though not nec-

essarily the same) font size:

Chapter 5 Dealing with sizes 112

It might seem that the algorithm could be improved beyond simply averaging the FontSize prop-

erties from the lower and upper FontCalc values. But the relationship between the font size and ren-

dered text height is rather complex, and sometimes the easiest approach is just as good.

